Froude and the contribution of naval architecture to our understanding of bipedal locomotion.

نویسندگان

  • Christopher L Vaughan
  • Mark J O'Malley
چکیده

It is fascinating to think that the ideas of two 19th century naval architects could offer useful insights for 21st century scientists contemplating the exploration of our planetary system or monitoring the long-term effects of a neurosurgical procedure on gait. The Froude number, defined as Fr = v2/gL, where v is velocity, g is gravitational acceleration and L is a characteristic linear dimension (such as leg length), has found widespread application in the biomechanics of bipedal locomotion. This review of two parameters, Fr and dimensionless velocity beta = (Fr)1/2, that have served as the criterion for dynamic similarity, has been arranged in two parts: (I) historical development, including the contributions by William Froude and his son Edmund, two ship designers who lived more than 130 years ago, the classic insights of D'Arcy Wentworth Thompson who, in his magnum opus On Growth and Form, espoused the connection between mathematics and biology, and the pioneering efforts of Robert McNeill Alexander, who popularised the application of Fr to animal locomotion; and (II) selected applications, including a comparison of walking for people of different heights, exploring the effects of different gravitational fields on human locomotion, establishing the impact of pathology and the benefits of treatment, and understanding the walking patterns of bipedal robots. Although not all applications of Fr to locomotion have been covered, the review offers an important historical context for all researchers of bipedal gait, and extends the idea of dimensionless scaling of gait parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness: a new SLIP model based criterion for gait transitions in bipedal locomotion

Bipedal locomotion is a phenomenon that still eludes a fundamental and concise mathematical understanding. Conceptual models that capture some relevant aspects of the process exist but their full explanatory power is not yet exhausted. In the current study, we introduce the robustness criterion which defines the conditions for stable 1 ar X iv :1 40 3. 08 79 v1 [ cs .R O ] 4 M ar 2 01 4 locomot...

متن کامل

Gait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator

The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...

متن کامل

Criteria for dynamic similarity in bouncing gaits.

Animals of different sizes tend to move in a dynamically similar manner when travelling at speeds corresponding to equal values of a dimensionless parameter (DP) called the Froude number. Consequently, the Froude number has been widely used for defining equivalent speeds and predicting speeds of locomotion by extinct species and on other planets. However, experiments using simulated reduced gra...

متن کامل

External forces and torques generated by the brachiating white-handed gibbon (Hylobates lar).

We compared the kinetics of brachiation to bipedal walking and running. Gibbons use pectoral limbs in continuous contact with their overhead support at slow speeds, but exhibit aerial phases (or ricochetal brachiation) at faster speeds. This basic interaction between limb and support suggests some analogy to walking and running. We quantified the forces in three axes and torque about the vertic...

متن کامل

Comparative three-dimensional kinematics of the hindlimb for high-speed bipedal and quadrupedal locomotion of lizards

Although lizards have been model organisms for testing locomotor performance and in ecomorphological studies, the limb movements of lizards during high-speed locomotion are poorly understood. Thus, we quantified the three-dimensional kinematics of the hindlimb, body and tail for five morphologically distinct species of lizard during steady-speed locomotion near maximum sprinting speed (2-5 m s-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gait & posture

دوره 21 3  شماره 

صفحات  -

تاریخ انتشار 2005